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INTRODUCTION 

During the past fifteen years a curious and instructive 

controversy has swirled about the oxidation-reduction primary 

standard ammonium hexanitratocerate and in particular about the 

thorium present in various preparations of the compound. 

Ammonium hexanitratocerate was first proposed as a primary 

standard by Smith, Sullivan and Prank (25). In a second paper. 

Smith and Ply (24) using weight buret titrations of KBS 40e 

Sodium Oxalate and N3S 83a Arsenic Trioxide found for two 

commercial lots of ammonium hexanitratocerate a purity of 

99.98 per cent, the average standard deviation over five sets 

of analyses (two products, two primary standards, one product 

after storage for one year) being 0.010 per cent, that is, an 

average standard deviation of 10 parts per 100,000. Comm.ercial 

preparations of ammonium hexanitratocerate, however, were later 

shown to contain variable and often appreciable amounts of 

thorium: by Voigt^ by measurement of the radioactivity, by 

Passel (6) by emission spectrographic analysis, by Salutsky, 

Kirby and Quill (20) by separation and identification of the 

radium 224 daughter product of thorium. The problem is one of 

reconciling the high purity reported with a significant thori'um 

^ Voigt, A., Ames, Iowa, Institute for Atomic Research. 
Data from unpublished research. Private communication. I967. 
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content, as high in some lots as several tenths of one per 

cent. 

Smith's original work (25) was done with small amounts of 

materials of which none remains. No lot numbers were recorded 

for the commercial preparations analyzed by Smith and Fly (24) 

and again no material was preserved. Direct examination of the 

original materials is thus precluded but two recent papers 

throw light on the problem. Smith (25) subjected a batch of 

ammonium hexanitratocerate to a series of recrystallizations 

from concentrated nitric acid. The thorium in successive crops 

was determined by emission spectrographic analysis and neutron 

activation analysis. The thorium content dropped very slowly; 

starting with a material bearing 0.4 per cent of thorium, the 

thorium in the materials obtained from four successive re-

crystallizations was 0.12, 0.041, 0.011 and O.OO5 per cent Th. 

In the other paper Fassel, Jasinski, DeKalb and Lucas (6) show 

that the failure to find thorium in earlier preparations may 

have resulted from misidentification of the lines of the spectra 

of cerium and of thorium. It is of course possible that the 

commercial preparations examined by Smith and Fly (24) were 

free of thorium, either because the starting materials were 

fortuitously free of thorium or because these particular lots 

were the result of a sufficient number of recrystallizations 

not given other commercial lots. 

The controversy surrounding the use of ammonium 
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hexanitratocerate makes it desirable to examine the reliabili­

ty of this compound as a primary standard and the relation­

ship between the oxidizing capacity and the thorium content. 

Potassium dichromate has been used extensively as a pri­

mary standard oxidizing agent. It is readily available in 

certified high purity from the National Bureau of Standards. 

The reaction of it as an oxidizing agent is well characterized, 

and its reputation as a primary standard is unquestioned. 

Potassium dichromate was therefore chosen as the ideal pri­

mary standard oxidizing agent to which ammonium hexanitra­

tocerate could be compared. 

The use of potassium dichromate as a primary standard 

acid, while not so widely recognized, was proposed by Richter 

(18) as early as I882. Kolthoff and Vogelenzang (lO)investi­

gated the titrations of dichromate with alkali and report that 

the neutralization reaction was slow. When the proper indica­

tor, thymolphthalein, was used however, these workers reported 

"serviceable" results. In the present work the utility of 

potassium dichromate as a primary standard acid was re-examined. 

Preliminary work with the usual glassware of volumetric analysis 

showed that, within experimental error (l part in 1,000), 

identical results were obtained for the standardization of a 

0.1 N sodium hydroxide solution using potassium acid phthalate 

and potassium dichromate. The slow neutralization reported 

by Kolthoff was not observed, although the first green color 



www.manaraa.com

k 

at the end-point (basic blue color of thymolphthalein super­

imposed on a yellow color of chromate) was sharp and distinct 

but not striking. The feasibility of high precision neutrali­

zation titrations of dichromate was thus apparent. 

In this work the purity of NBS 156b potassium dichromate 

has been determined by coulometric titration with both electro-

generated iron(II) and with electrogenerated hydroxide ion. 

The purities as determined by each of these methods were in 

agreement with and confirmed the results of Marinenko and 

Taylor (15). The difference between the coulometric assay, 

99.975 per cent, and 100.000 per cent is a matter of concern 

and supplementary work was carried out to show that the differ­

ence, 0.025 per cent, consists of metallic impurities (about 

0.0055 per cent) and water (0.0200 per cent). The metallic 

impurities were detected and determined by mass spectro-

graphic analysis by others in this laboratory. The water was 

determined by weight loss on prolonged drying at 250°C. 

The purities of several preparations of ammonium hexanitra-

tocerate have been determined by constant current coulometric 

titration with electrogenerated iron(Il). The results make it 

very certain that the purity, as determined by the oxidizing 

capacity, falls off with increasing thorium content. Given a 

thorium-free preparation, however, the coulometric assay indi­

cates a definite composition and a purity which places ammonium 

hexanitratocerate on a par with potassium dichromate as a 

primary standard. 
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Constant current coulometry represents one of the most 

precise techniques at the disposal of the analyst for deter­

mining the purity of materials and was therefore chosen as the 

analytical technique to be used in this work. Coulometric ti- . 

trations require only the measurement of the physical quantities 

of mass, time, resistance and potential all of which can be 

measured with great accuracy and relative ease. Coulometric 

titrations with precisions of a few parts in 100,000 have been 

obtained by several workers: by Taylor and Smith (28) in the 

analysis of benzoic acid, potassium acid phthalate, adipic 

acid, constant boiling hydrochloric acid, and sodium carbonate; 

by Marinenko and Taylor (14) of sodium chloride, sodium bromide 

and potassium iodide; by Marinenko and Taylor (15) of potassium 

dichrqmate; by Cooper and Quayle (5) of sodium carbonate; by 

Eckfeldt and Shaffer (5) of potassium acid phthalate and 

constant boiling hydrochloric acid; by Marinenko and Taylor 

(16) of arsenic trioxide and elemental iodine. The method has 

been so successful that the coulomb has been proposed as the 

ultimate primary standard (27* 5). 

In the work being described here, apparatus for high pre­

cision, constant current coulometry has been assembled from 

commercially available components (Leeds and Northrup Company, • 

Philadelphia, Pennsylvania, reference (5)). This apparatus has 

been used to determine the purities of ammonium hexanitrato-

cerate and potassium dichromate. 

( 
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As will be shown in a subsequent discussion of the ex­

perimental work, the measurements of each of the terms in 

Faraday's law of electrolysis, current, mass, time, the value 

of the Faraday, and the equivalent weight, could be made with 

errors of less than two parts in 100,000. This uncertainty 

represents the limits to which the precision and accuracy of 

constant current coulometry can be pushed at the present time. • 

Precisions and accuracies of the order of a few parts in 

100,000 were chosen as the goal for the present work. 

Goulometric titrations are of two types : internal and ex­

ternal generation of titrant. In the former technique the 

titrant is generated and the titration reaction carried out in 

the same cell. This technique was used to carry out reducti-

metric titrations of potassium dichrornate and ammonium hexani-

tratocerate with electrogenerated iron(Il). The problems en­

countered in coulometric titrations with internal generation 

of titrant are : l) insuring the separation of anode and cathode 

reaction products while maintaining electrical contact; 2) 

choosing conditions such that the current efficiency is one' 

hundred per cent, and 5) of finding a suitable method of end-

point detection. Each of these factors is discussed in the 

appropriate following section with particular emphasis being 

given the problem of end-point detection in view of the parti­

cipation of platinum indicator electrodes in oxidation-re­

duction reactions. 
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The high precision constant current coulometric titra­

tion of potassium dichromate, or more correctly its hydroly­

sis product, with electrogenerated hydroxide ion posed a 

special problem. Hydroxide ion is produced by the electro­

chemical reduction of water, and since dichromate would be re­

duced in preference to water, external generation of titrant 

is necessary. Ordinarily external generation is carried out 

at electrodes sealed into tubes through which an electrolyte 

solution flows, the generated titrant being allowed to drip 

from the tube into the titration cell. However, in view of 

the extended period of time required for a high precision 

titration, eight hours or so, the continual flow of solution 

into the cell made external generation impractical. A new 

cell was designed to circumvent this difficulty. The bulk of 

the hydroxide ion was generated in one of two connecting 

chambers; the sample is placed in the other. When nearly all 

of the titrant, has been generated, the solutions were mixed; 

the titration was then completed with an external dripping 

electrode. With this new cell, it was possible to titrate 

potassium dichromate as an acid with high precision. The prob­

lems of 1) separating anode and cathode and 2) detecting the 

end-point are present in work with the new cell, however, in 

the special case of the generation of hydroxide ion, current 

efficiency is necessarily one-hundred per cent in the absence 

of impurities. 
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The assay of the materials reported in this work suggest 

that purities a few hundredths of a per cent below the theoreti­

cal might be expected for primary standards. In the case of 

potassium dichromate low assay has been shown to be largely 

due to occluded water although the presence of other impurities 

was detected. In general the analysis of primary standard 

materials reported by other workers are also a few hundredths 

of a per cent below the theoretical. Unless the analyst per­

forms painstaking purifications or obtains certified materials, 

there is always some question as to the reliability of a pri­

mary standard material. In the former case, the analyst fre­

quently lacks the time or the facilities to perform the puri­

fication. In the latter, the desired material is frequently 

unavailable in certified, purity and is always expensive when 

available. By using constant current coulometry, the analyst 

can perform nearly all the types of titrations normally carried 

out volumetrically. In view of the success of the constant 

current coulometric method of analysis, it is now possible to 

adopt the coulomb as the ultimate primary standard for chemi­

cal analysis. 
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EXPERIMENTAL WORK 

Apparatus and Materials 

Measurement of current 

A Leeds and Northrup Company "Coulometric Analyzer" (L 

and N catalog number 7960) was used as the source of constant 

current. The L and N 79^0 has three output currents of approxi­

mately 64.3, 6.42 and 0.643 mamps., respectively. Current was 

determined by measuring the voltage drop across a resistance of 

19.99979 ohms, this resistance having been specially constructed 

and calibrated by the Leeds and Northrup Company (L and N Cat. 

No. 4025-B-S). Potential was measured with a Leeds and North­

rup "Potentiometer Facility" (Cat. No. 7555) consisting of a 

Type K-5 potentiometer, a null detector (Cat. No. 9834-1 D. C.), 

constant voltage supply (Cat. No. 9878), and a Weston standard 

cell. Voltage regulators were used to eliminate fluctuations 

in the line voltage. Deviations of + 0.002 per cent in the IR 

drop at maximum current flow could be detected with this 

arrangement. The manufacturer states (5) that the 7960 current 

source produces an appreciable A. C, ripple but that it falls 

within the integrating capabilities of the null detector. 

The 4025-B-S resistor was immersed in a constant tempera­

ture bath of mineral oil but even with the bath providing a 

heat sink, the temperature of the resistor rose with the 

passage of current. A temperature increase of about 1° occurred 

in the first few minutes of current passage with the output of 



www.manaraa.com

10 

the constant current source at its maximum, 64.5 mamps. After 

the first few minutes, the temperature increase slowed somewhat 

and after about 15 minutes, the temperature reached a steady-

state 1.5° above the temperature of the bath. Most of the 

temperature increase took place during pretitration as de­

scribed below, so that the change in resistor temperature 

during an actual titration never amounted to more than a few 

tenths of one degree. Nevertheless, each time the IR drop was 

measured, the temperature of the resistor was noted and the 

actual resistance calculated using temperature coefficients 

provided by the manufacturer : 

= 19.9997 [1 + 0.000002 (t-25) - O.OOOOOO5 (t-25)^] 

Two Weston cells were used alternately. Each cell was 

calibrated every three months against a third resident cell 

in the Iowa State University Instrument Shop. This third cell 

was periodically calibrated against a fourth cell which was 

sent to the National Bureau of Standards for calibration at 

intervals of six months. 

The Type K-5 potentiometer was calibrated at the 

standardizing laboratory of the Leeds and Northrup Company. 

At the potentials measured, no corrections were required. 

Measurement of time 

The L and N coulometric analyzer is equipped with a 

synchronous timing motor and a counter reading directly in 

microequivalents. To eliminate the consequences of possible 
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vai'latioiij in the frequency of the alternating current main the 

counter :iiay be driven alternatively by a frequency standard. 

A frequency standard manufactured by American Time Products, 

Ivoodside, New York, Model 2OO5A, was used in this work. The 

frequency standard driven counter was calibrated using the 

time signals of Radio Station WIaTV of the National Bureau of 

Standards. Six calibration runs were made over elapsed times 

ranging from 24 to 72 hours. The number of counts per minute 

for these six runs agreed to within one part in one million. 

The time calibration was checked periodically during the course 

of the work. 

Measurement of mass 

The standards of mass used were one-gram and ten-gram 

Class M weights calibrated by the National Bureau of Standards. 

Weighings were made on an Ainsworth TCX equal-arm balance to 

the nearest 0.01 mg. All weighings were made by substitution, 

that is, the empty sample boat and the calibrated weight of 

the appropriate size were weighed together, the calibrated 

weight was removed, and sample was added to the boat until the 

weight was equal to the weight removed to within one milligram. 

Weighings were corrected to weight in vacuum using as the 

density of potassium dichromate 2.69 and of ammonium hexanl-

tratocerate 2.6l. 

The weights of the materials analyzed were chosen to re-

quire a sufficient number of coulombs for titration to permit 

measurement to at least one part in 100,000; one-gram samples 
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of potassium dichroinate (equivalent weight 49.0^20) and ten-

grari samples of ammonium hexanitratocerate (equivalent weight 

54s.2;3) were used. 

Calculation of equivalents 

For the conversion of coulombs to electrochemical equiva­

lents, the current value of the Faraday was used, 96,487.0 

f 1.2 coulombs per equivalent, as measured by Craig, Hoffman, 

Law, and Hamer (4) and corrected to the atomic weight 

scale (l4). The equivalent weights used, 49.0^20 for potassium 

dichromate and $48.2$ for ammonium hexanitratocerate, were 

calculated using the values of the I961 Report of the Inter­

national Commission on Atomic Weights (7). 

Titration cell, electrodes, electrolytes for reductimetric 

titrations 

Reductimetric titrations were carried out in a cell simi­

lar to that of Eckfeldt and Shaffer (5). The cell consisted of 

a 1-liter, tall form beaker fitted snugly with a cover of poly­

ethylene through which passed the generating reference and 

indicator electrodes, shield tube, and nitrogen inlet- tube. 

Cathode and anode were separated by two concentric shield 

tubes, the bottom of each being provided with ultrafine, glass 

frits as shown in Figure 1. The shield tubes are the essential 

feature of the Eckfeldt and Shaffer cell and as in their work, 

a head was maintained on the electrolyte in the intermediate, 

bridge solution such that flow of this electrolyte was into 

anolyte and catholyte, thus insuring that no transfer of 
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Figure 1. Coulometric titration cell. A. Platinum cathode; 
B. Platinum anode; C, D. Ultrafine, glass frits on 
bottom of shield tubes; E. Nitrogen inlet; P, G. 
Indicator electrodes, either two platinum foils or 
a platinum foil and a s„c.e.; H. Magnetic stirring 
bar; I. Polyethylene cover; J. 1-Liter, tall-form 
beaker. 
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material out of either cathode or anode chamber occurred. 

The working cathode was a helix of platinum wire with a 

surface area of 26 cm®. The anode was a platinum foil with a 

surface area of 2.5 cm^. 

The catholyte consisted of 500 ml. of a solution of 0.20 

M in iron(lll) perchlorate and 4.0 M in perchloric acid. The 

analyte, and also the electrolyte in the intermediate chamber, 

was a solution 1.0 M in sodium perchlorate and 0,1 M in perch­

loric acid. 

Titration cells, electrodes, electrolytes for neutralization 

titrations 

The cell used for the titrations of potassium dichromate 

as an acid is shown in Figure 2. This cell consisted of two 

chambers, A and H, separated by a polished ground glass joint 

B. Chamber A was similar in construction to the cell shown in 

Figure 1, the total volume of A being 500 ml. The bulk (99.959^) 

of the required hydroxide ion was generated in chamber A. The 

sample was dissolved in chamber H. Upon opening valve B the 

solutions mixed and by using nitrogen pressure and stopcocks 

C, the solution could be alternately forced into chamber A and 

allowed to flow back into chamber H thus insuring that the 

solutions were well mixed. 

The titration was completed by generating the final 

hydroxide ion at a small platinum wire cathode D. Solution 

flowed over the cathode from a reservoir through glass tubing 

E. The anode was located in a side arm connected to tube E 
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Figure 2. Coulometric titration cell for external genera­
tion of titrant. A: Generation chamber; a. Plati­
num cathode; b. Platinum or silver anode; c. Ultra-
fine glass frits on bottom of shield tubes; d. Poly­
ethylene cover; e. Nitrogen inlet; B. Polished, 
ground-glass standard taper valve; C. 3-Way stop­
cocks; D. Platinum wire cathode for completion of 
titration; E. Glass tubing to solution reservoir 
(counter electrode to D located in side-arm on tube 
E); F and G. Glass-reference indicator electrodes; 
H. Reaction chamber. 
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through an ultra-fine glass frit. 

The catholyte consisted of 120 ml. of a 1.0 M solution 

of sodium perchlorate. The anolyte consisted of either a 

1.0 M solution of potassium chloride, in which case a silver 

wire anode was used, or a 1.0 M solution of sodium perchlorate, 

in which case a platinum wire anode was used. The bridge tube 

in chamber A contained a solution identical to the catholyte. 

Samples and Reagents 

Potassium dichromate NBS 136b 

Potassium dichromate was dried at 110°C for 24 hours and 

stored in vacuum over anhydrous magnesium perchlorate. 

Ammonium hexanitratocerate 

Six lots of ammonium hexanitratocerate were obtained from 

the G. Frederick Smith Chemical Company, Columbus, Ohio, the 

material having been manufactured at various times from 1952 

to 1967; a seventh specimen (C of Table 4) was prepared from 

basnaesite. Each specimen was dried at TO°C for 24 hours and 

stored in vacuum over anhydrous magnesium perchlorate. 

Specimen C was prepared from a rare earth oxide concen­

trate obtained from the thorium-free mineral basnaesite, 

GePCOs. The rare earth oxide was partially dissolved in 2 

liters of boiling nitric acid. The solution obtained was 

filtered and concentrated to 1 liter by boiling. The cerium(IV) 

in a small aliquot of the solution was determined by titration 
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with ferrous sulfate. The theoretical amount of ammonium 

nitrate was then added and ammonium hexanitratocerate caused 

to crystallize by cooling. The product was collected on a 

fritted glass funnel and washed with concentrated nitric acid. 

The ammonium hexanitratocerate obtained in this way was re -

crystallized five times from concentrated nitric acid and dried 

at 55° under vacuum for 48 hours. 

Ferric perchlorate 

Commercial samples were found to contain appreciable 

amounts of chloride and the ferric perchlorate used in the 

catholyte was prepared by dissolving individual 2-gram portions 

of electrolytic iron (G. Frederick Smith Chemical Company) in 

50 ml. of 72 per cent perchloric acid and heating to boiling. 

By cooling the solutions quickly the resulting precipitate of 

ferric perchlorate was chloride free. 

Nitrogen 

Commercial "Prepurified" cylinder nitrogen was passed 

successively through scrubbers containing l) distilled water; 

2) vanadium(II) sulfate in 1 M sulfuric acid over amalgamated 

zinc (17)# 5) alkaline permanganate (to insure the absence of 

hydrogen sulfide sometimes generated in the preceding oxygen 

absorption scrubber), and 4) a solution 0.20 M in iron(IIl) 

perchlorate and 4.0 M in perchloric acid or 1.0 M NaClO^ 

(identical with catholyte). In reductimetric titrations, 

the nitrogen was initially passed through a tube containing 
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ascarite to remove carbon dioxide. 

Water 

All solutions were prepared using distilled, deionized 

water further redistilled over alkaline permanganate. 

Procedure 

Reductimetric titrations with electrogenerated iron(II) 

A sample was weighed to the nearest 0.01 mg. into a plati­

num or glass boat using the substitution method. The boat 

was suspended by a platinum wire above the catholyte and held 

there while the pretitration was carried out and the major part 

of the iron(II) needed for .the titration was generated. These 

three operations were carried out as follows. Nitrogen gas 

was bubbled through the catholyte for at least one hour; the 

nitrogen inlet tube was then raised above the catholyte and 

the flow of nitrogen reduced so that a small stream of nitro­

gen impinged gently on the surface of the catholyte. A small 

'amount of the oxidizing agent (about 2 mg. of potassium di-

chromate or l8 mg. of eerie ammonium sulfate (about 4-0 micro-

equivalents)) was added to the catholyte. The solution was 

stirred for about 5 minutes and the oxidizing agent titrated 

to well past the equivalence-point using the high current out­

put of the constant current source. The procedure was re­

peated three times to insure that any oxidizable or reducible 

impurities in the catholyte were removed. A fourth addition 

of oxidizing agent was then made to the catholyte and the 
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titration carried out using the 0.645 mamp. output of the 

constant current source. The last pretitration was carried out 

by passing the current for short intervals, and after each, 

measuring the amperometric current passing the end-point de­

tection electrodes (see following section on end-point de­

tection). The titration was carried beyond the end-point and 

the final reading on the counter was recorded. The counter 

was then reset to zero and iron(ll) generated using 64.5 mamp. 

This was continued until about 99.8 per cent of the iron(II) 

needed for the weight of sample taken was generated. The 

reading of the counter was again recorded and the counter re­

set at zero. The boat and sample were lowered into the catho-

lyte and after the sample had dissolved, the titration was con­

tinued using the 0.645 mamp. current and the same procedure 

for locating the end-point. Counter readings were then con­

verted to seconds. 

Weights of both the potassium dichromate and the ammonium 

hexanitratocerate were chosen so that about 20,000 micro-

equivalents were titrated, about eight hours being required 

for the titration at the 64.5 mamp. current. During the titra­

tion the IR drop across the standard resistor was measured 

every 15 minutes or so. The temperature of the resistor was 

noted each time the IR drop was measured. The nominal value 

of the resistance was corrected to the temperature at which 

the IR drop was measured as described above, and the current 

calculated. The thirty or so measurements of the current 
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obtained during a given titration Seldom varied more than 8 

parts in 100,000, and the relative standard deviation of a 

set of values never exceeded 1 part in 100,000. Using the 

average value of the current and the number of seconds indi­

cated by the standard frequency driven counter the number of 

coulombs passed at 64.5 mamp. was calculated. In a similar 

manner the coulombs passed at the lower current was determined 

by summing the counter readings for the current passed after 

the end-point in the pretitration and in approaching the end-

point in the actual titration. The IR drop at the lower 

current was usually measured 7 to 10 times during each approach 

to an end-point. The precision of the measurement of the 

lower current was, of course, somewhat poorer, on the order of 

10 parts in 100,000. However, only one or two one-thousandths 

of the total coulombs were passed at low current and the un­

certainty introduced was negligible. 

Neutralization titrations with externally electrogenerated 

* hydroxide ion 

About two liters of a 1.0 M sodium perchlorate solution 

was oxidized electrolytically to pH 5.5 at a platinum anode 

immersed in a covered four liter beaker. Nitrogen gas was 

passed over the stirred solution for at least one hour to 

remove dissolved carbon dioxide. The polarity of the elect­

rodes was reversed and the solution reduced electrolytically 

to pH 7.00 + 0.05 and transferred to a reservoir connected 
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to the small external generating electrode, D in Figure 2. 

The solution in the reservoir was kept under nitrogen pressure 

to prevent the absorption of carbon dioxide from the atmos­

phere . 

A volume of I50 ml. of a 1.0 M sodium perchlorate solu­

tion was introduced into the external generation chamber A in 

Figure 2, and titrated coulometrically to pH 5.5. Nitrogen, 

free from oxygen and carbon dioxide, was passed over the solu­

tion for at least one hour to remove dissolved carbon dioxide. 

The polarity of the generating electrode was reversed and the 

acid solution titrated coulometrically to pH 8.5. The above 

procedure, that is alternate oxidation and reduction, was re­

peated three times to insure the removal of electroactive im­

purities. The final step was always the titration of an acid 

solution to pH 7.00 + 0.01. Valve B in Figure 2 was then 

opened and the solution allowed to flow into the titration 

chamber H. A few crystals of potassium dichromate were added 

to the solution in the titration chamber and the resulting 

solution titrated with electrogenerated hydroxide ion using 

the small generating electrode, D in Figure 2, and the 0.645 

mamp. output of the constant current source. The pretitration 

was carried out by passing current for short intervals and, 

after each, measuring the pH of the solution (see following 

section on end-point detection). The titration was carried 

slightly beyond the end-point and, as in the reductimetric 

titrations, the amount of excess hydroxide ion was added to the 
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amount generated during the titration itself. The solution 

in the titration chamber was now ready for the introduction 

of the sample. 

A volume of I50 ml. of sodium perchlorate was placed in the 

generating chamber of the cell, A in Figure 2. Carbon dioxide 

was removed and the solution titrated to pH 7.00 + 0.01 by the 

procedure just described. The counter of the constant current 

source was set to zero and 99.9 per cent of the theoretical 

hydroxide ion was generated using the 64.5 mamp. output of the 

constant current source. The counter reading was recorded and 

the zero reset. The sample, weighed by difference into a glass 

boat, was lowered into the titration chamber, H in Figure 2. 

After the sample had dissolved, valve B was opened and the 

hydroxide solution allowed to flow into chamber H. The solu­

tion in H was then forced into chamber A by nitrogen introduced 

through stopcock C and in this way chamber A was rinsed and 

the transfer of hydroxide made quantitative. After five such 

transfers, the titration was resumed using the small generating 

cathode, D in Figure 2, and the 0.643 mamp. output of the 

constant current source. The titration was completed by pass­

ing current in small increments and measuring the pH of the 

solution after each increment. Before each pH measurement 

chamber A was rinsed three times with solution from H by using 

nitrogen pressure and stopcock 0 as described. 
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Sample weights of potassium dichromate were chosen so 

that about 20,000 microequivalents were titrated. The number 

of coulombs passed in each titration was determined in the 

same manner as for reductimetric titrations. 
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DISCUSSION 

Reductimetric Titrations with Electrogenerated Iron(il) 

Current efficiency 

The conditions for the electrogeneration of iron(II) with 

one hundred per cent current efficiency from iron(III) in sul­

furic acid solution were determined by Marinenko and Taylor 

(15) who used the method of Lingane and co-workers (12, 15). 

By the same method the conditions for the one hundred per cent 

efficient generation of iron(II) in perchloric acid were 

determined. Figure 5 shows current density versus potential 

curves for a platinum cathode immersed in a well stirred solu­

tion containing iron(ill) and perchloric acid. Curve A is for 

a 4.0 M perchloric acid solution containing no iron(lll). The 

potential of the cathode corresponds to the reduction of hydro­

gen ion. Curve B is for an identical solution this time con­

taining 0.05 M iron(lll). At low current densities, below 2 

mamp. per cm®, the potential of the cathode corresponds to the 

reduction of iron(ill). However, as the current density in­

creases the potential of the cathode rapidly becomes more 

negative until curves A and B superimpose indicating the re­

duction of hydrogen ion and the loss of current efficiency. 

Curves C, D, and E correspond to increasing iron(III) concen- -

trations. In this work the current density on the cathode 

never exceeded 2.3 mamp. per cm®. The initial iron(lll) con­

centration was 2.0 M. After pregeneration of iron(II) almost 
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Figure 3. Current density applied to a platinum cathode 
versus the potential of the cathode. A. 4.0 M 
HCIO4.; B. 0.01 M Pe(III) in 4.0 M HCIO^; C. O.O5 
M Pe(lll) in 4.0 K HCIO4; D. 0.10 M Fe(lll) in 4.0 
M HCIO4; E. 0.20 M Fe(IIl) in 4.0 M HCIO*. 



www.manaraa.com

28 4 

CO 

£ 
u 
CL 
E 
o 
E 

"c 
(U 
u 
(_ 
3 
U 

Potential vs. S.C. E., volts 



www.manaraa.com

29 

equivalent to one gm. of potassium dichromate or ten gm. of 

ammonium hexanitratocerate, about 20,000 microequivalents, 

the concentration of iron(III) dropped to O.16 M, As can be 

seen from Figure 5* current efficiency was therefore maintained. 

End-point detection 

The end-point in the titration of potassium dichromate 

was determined amperometrically using the electrode pair : 

s.c.e.-platinum (bright foil, 1 cm^ total area). The platinum 

electrode was made O.875 volts positive to the s.c.e. using a 

Leeds and Northrup Company Electrochemograph. At this potential 

dichromate is not reduced owing to the irreversibility of the 

dichromate-chromic couple and no cathodic current flows before 

the end-point; iron(ll) is oxidized, however, and the end-

point is marked by the first current flow as indicated by the 

microammeter on the polarograph. 

The end-point in a titration of dichromate is shown in 

Figure 4. The end-point could easily be determined to the 

nearest one-tenth microequivalent. Inasmuch as one gram of 

potassium dichromate contains about 20,000 microequivalents, 

the end-point was easily determined to the desired accuracy of 

one part in 100,000. 

The end-point detection system used in the titration of 

dichromate could not be used in titration of cerium(IV) with 

electrogenerated iron(II). At the applied potentials required 

to oxidize iron(II), cerium(iv) is reduced. A cathodic current, 

resulting from the reduction the cerium(IV) flows before the 
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Figure 4-. End-point in the titration of potassium dichromate 
with electrogenerated iron(Il). Indicating 
electrode system: 0.875 v. vs. s.c.e. applied to 
a platinum foil 1 cm^ in this area. 



www.manaraa.com

31 

20 21 22 

FeGi) Generated, uequiv* 



www.manaraa.com

52 

end-point, and an anodic current due to the oxidation of 

iron(ll) flows after the end-point. The microammeter records 

a continuous increase in current and the change from cathodic 

current to anodic current at the end-point is difficult to 

locate. 

The end-point detection system used in the titration of 

cerium(IV) was that of Stone and Scholten (26). A potential 

of 100 mv. was applied to two platinum electrodes, each 1.0 

cm^ in total surface area, using a Leeds and Northrup Type E 

Electrochemograph to supply the potential and measure the 

current. The current before the equivalence-point accompany­

ing the reduction of cerium(IV) decreased as the concentration 

of cerium(IV) decreased; beyond the equivalent-point the 

current accompanying the oxidation of the iron(II) formed in­

creased with increasing iron(ll). A typical end-point is 

shown in Figure 5.. The current fell to zero and remained at 

zero for about two microequivalents before increasing. The 

equivalence-point was taken at point A, Figure 5, the point 

at which a definite increase in the current was observed, and 

this point was used in both the pretitrâtion and the titration 

proper. 

As discussed in the next paragraph, the horizontal portion 

of the indicating current is caused by the reduction of plati­

num oxide on the surface of the indicating electrodes, this 

platinum oxide being formed just prior to the end-point by 
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Figure 5. End-point in the titration of ammonium hexanitratocerate with electro-
generated iron(ll). Indicating electrode system: 100 mv. applied to 
two platinum foil electrodes, each 1 cm^ in area. 
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attack of the platinum by cerium(IV). It was hoped that the 

extent of formation and removal of this platinum oxide was the 

same in the two end-points used in each analysis. However, as 

will be seen in the results reported in Table 1 and 4, the 

standard deviation in the analysis of the ammonium hexanitra-

tocerate is 2 to 2,5 times that of the analysis of the potassium 

dichromate and this probably results from the uncertainty in 

the end-point. 

Platinum oxide formation as a complication in end-point de -

tection 

The existence of films of finely divided metallic platinum 

and of platinum oxide on bright platinum surfaces has been de­

monstrated by various workers, in particular by Ross and Shain 

(19), by Kolthoff and Nightingale (9)t by Anson (1,2), and by 

Lee, Adams and Bricker (ll). In substance, these papers report 

that the surface of bright platinum is oxidized to platinous 

oxide by various strong oxidizing agents and the oxide reduced 

by iron(ll) or iodide. Ross and Shain showed how this forma­

tion of oxide introduces an error into the titration of di­

chromate with iron(II) by delaying the potentiometric end-

point, the size of the error, depending on the direction of 

titration is governed by the speeds of formation and reduction 

of the oxide, 

Some further experiments were made to confirm that the 

anomalous end-point behavior observed iri this work actually 
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resulted from oxidation of the platinum indicating electrodes. 

It was found that the plateau observed at the end-point was 

extended by immersing the electrodes in a solution of cerium-

(IV) before using them in a titration; the plateau was re­

duced (to one microequivalent) by immersing the electrodes in 

iron(Il) sulfate, rinsing and immediately using them in a ti­

tration already close to the end-point. Reduction in the area 

of the electrode resulted in a reduction of the length of the 

plateau; however, this is not a solution to the problem for 

the indicator current passed is also decreased and the lower 

slopes render the end-point less certain. Annealing the 

platinum foils before use and mounting them gently to avoid 

introducing surface strains or work hardening gave electrodes 

which did not function at all for a minute or so, the indica­

ting current fluctuating widely but finally settling down and 

displaying the usual plateau; this surprising result indicates 

that the platinum oxide-platinum couple must be present for 

current flow, such a result being implicit in the work of Lee, 

Adams and Bricker (11). 

The length of the plateau observed, 2 microequivalents in 

Figure 5* makes it possible to calculate the amount of- plati­

num oxidized: 195 ^g.; taking the atomic radius of platinum 

at 1.29 I and assuming a simple structure of eight platinum 

atoms at the corners of a cube, calculation indicates the 

platinum reacting to form oxide to be about 50 atoms deep. 



www.manaraa.com

57 

Because of the length of the plateau depends on the pre­

vious mechanical and chemical treatment given the electrode, 
r 

an empirical approach to the problem was about all that could 

be made. The conditions prior to the end-point in the pre-

titration and in the actual titration were made as identical 

as possible. Point A of Figure 5 was taken as the end-point 

on the assumption that all platinum(II) was reduced at this 

point in the pretitration and in the actual titration. Any 

platinum oxidized during the titration being at the expense 

of cerium(IV), and an equivalent number of coulombs were pre­

sumably required to reduce the oxidized platinum so that in 

effect only cerium(IV) was titrated. 

Comment on sequence adopted during titration 

The pretitration procedure was used to insure that all 

iron in solution was present as iron(lll), except for that 

generated beyond the end-point which was measured and taken 

into account in the calculations. Any other oxidizable or 

reducible impurities were presumably removed also by the pre-

titrations. Immediately after the pretitration the platinum 

indicating electrodes were raised above the solution and rinsed 

with a minimum volume of distilled deaerated water. After the 

major part of the iron(II) had been generated and the sample 

added and dissolved, the electrodes were again immersed and 

the titration completed. In this manner the electrodes were 

in contact with oxidizing agent for.approximately the same 
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length of time in the pretitration and in the actual titra­

tion. 

For two reasons, about 99.8 per cent of the iron(ll) was 

generated before the sample was added to the catholyte. l) The 

only reaction at the cathode was thus the reduction of iron(III) 

and the back e.m.f. was thus constant during almost the entire 

generation and the even slight change in current which might 

result from a shift from the cerium(IV)-cerium(III) couple to 

the iron(III)-iron(II) couple was obviated. 2) Reduction of 

nitrate, added necessarily in the titration of ammonium hexani-

tratocerate, was avoided. Nitrate is reduced slowly by iron-

(II) and, in this work in which titrations extended over eight 

hours, the interference became serious if the sample were added 

immediately. 

Actually, as shown in the results tabulated in Table 1 , 

identical results were obtained in the analysis of potassium 

dichromate by adding the sample immediately and by deferring 

the addition until the iron(II) had been almost completely 

generated. 

Platinum boats were used in the titrations of the 

potassium dichromate. Although an identical result was ob­

tained in the one analysis in which the sample was carried on 

a glass boat, it is possible that platinum was being oxidized 

by the dichromate and reduced by iron(II) as the end-point 

was approached. Such oxidation and reduction is not detect­

able in this titration because no current flows in the 
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indicating system until the end-point is passed. Glass boats 

were used in the titrations of ammonium hexanitratocerate. 

Following the procedure outlined above, a second sample 

of potassium dichromâte was sometimes titrated in the same 

solution, the end-point in the first titration becoming the 

pretitration end-point of the second. Titration of a third 

sample was not feasible owing to precipitation of potassium 

perchlorate which occluded dichromate to the extent of be­

coming yellow in color. A second sample of ammonium hexanitra­

tocerate cannot be so titrated because of the reduction of 

nitrate (in actual trials positive errors of ten per cent). 

Neutralization Titrations with Externally 

Electrogenerated Hydroxide Ion 

Current efficiency 

The electrogeneration of hydroxide ion from a sodium 

perchlorate solution proceeds with 100^ current efficiency 

since there are no species more easily reduced than water 

present. It is clear from the balanced equations that a 

hydrogen ion is consumed for every electron used in the re­

duction of such species as chlorate or perchlorate so that 

even if traces of chlorate were present or traces of per­

chlorate were reduced overall current efficiency was main­

tained. 
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End--point detection 

A plot of pH versus milliliters of titrant for the titra­

tion of potassium dichromate with 0.1 N sodium hydroxide is 

shown in Figure 6. It is evident from this plot that the end-

point in coulometric neutralization titrations could be deter­

mined by following the pH of the potassium dichromate solution 

during the titration. However, only the final 0.2 per cent 

or so of the titration is carried out after the addition of the 

sample and, thus, only the last 0.2 per cent of the titration 

curve is observed. The actual end-points were calculated by 

the differential method of Yan (50) using eight points from 

the titration curve which were very near to and bracketed the 

end-point. End-points obtained in this way were not so pre­

cise as the amperometric end-points ; the estimated error in 

the pH end-points being about 0.5 microequivalents. 
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Figure 6. Titration of 0.9971 grams potassium dichromate with 0.1222 N 
sodium hydroxide. 
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RESULTS 

Titrations of Potassium Bichromate 

Results of six titrations of NBS potassium dichro-

mate, with electrogenerated iron(ll) are given in Table 1. 

The average, 99-975 per cent, is in good agreement with the 

value of 99.977 per cent obtained by Marinenko and Taylor (15), 

the standard deviation, 0.002, being the same as that of 

Marinenko and Taylor. This furnishes a check on the calibra­

tion of the L and N equipment and on the operation of the cell 

used. Three of the six titrations were carried out by direct 

titration, the other three by first generating 99.8 per cent 

or so of the iron(ll) before adding the sample; no difference 

was detected in the results. 

Table 1. Coulometric assay of NBS Ijôb potassium dichromate 
by titration with electrogenerated iron(II) 

Found Found in other work 
per cent per cent 

99.972% 99.98 Certificate value 
99.974 
99.974° 99.977 Marinenko and 
99.975^ Taylor (15) coulo-
99.97T: - metric 
99.977 

Average 99.975 

Standard deviation 0.002 

^Samiple added immediately after pretitration. 

^Sample added after 99.8 per cent of the iron(II) had 
been generated. 
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Results of six titrations of NBS 1^6p, potassium di-

chromate, with electrogenerated hydroxide ion are given in 

Table 2. The average, 99.978 per cent, is in good agree­

ment with the reductimetric titration data. The slightly 

poorer precision in the neutalization titration data, 

standard deviation O.OO5 per cent, probably reflects a less 

precise method of end-point detection. The operation of the 

external generation cell was confirmed by the agreement of 

neutralization and reductimetric titration data obtained for 

potassium dichromate and also by titration of potassium acid 

phthalate. For two titrations of NBS 84d, potassium and 

phthalate, with electrogenerated hydroxide ion by the same 

procedure used to titrate the dichromate, purities of 99.986 

and 99.990 per cent were obtained. These results are in ex­

cellent agreement with the 99.989 per cent purity obtained by 

Taylor and Smith (28) also by coulometric titration with 

electrogenerated hydroxide. 

Table 2. Coulometric assay of NBS 136b potassium dichromate 
by titration with electrogenerated hydroxide 

Found per cent 

99.970 99.979 
99.976 99.980 
99.977 99.985 

' Average 99.978 
Standard deviation O.OO5 
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The uncertainties in the atomic weights of potassium, 

+ 0.001, chromium, + 0.001, and oxygen, + 0.0001 introduce an 

uncertainty of + O.OO5 in the molecular weight of potassium di-

chromate (molecular weight, 294.192) or about I.7 parts in 

100,000. The standard deviations of the analysis reported here 

and of those of Marinenko and Taylor (15) thus approach the un­

certainty in the molecular weight of the potassium dichromate. 

The 0.024 per cent unaccounted for in the coulometric assay 

must thus result from some impurity and not from errors in the 

atomic weights. 

Svec and Conzemius are reporting (27) from this laboratory 

a spark source mass spectrographic analysis of NBS 156b for 

eighty elements excluding the elements in potassium dichromate, 

and hydrogen, lithium, and the rare gases. The impurities de­

tected and measured semiquantitatively total only 55 p.p.m.s. 

(parts per million atomic), sodium, rubidium, vanadium and 

iron accounting for 54- p.p.m.a. A redox equivalent weight was 

calculated on the assumption that sodium and rubidium replace 

potassium and that iron and vanadium replace chromium. Thus, 

for a million atoms of potassium dichromate. 

Equivalent weight = 

Na^oRbsK^ (g/ll) (10® )-46)^^( (2/11) (10® )-8)^'^^®°((7/ll) (10®)) 

5((2/ll)(l0®)-8) + 1(7) 

the denominator being set up on the assumption that 
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(2/11)(1,000,000)-8 atoms of chromium undergo a change of oxi­

dation number 5* that 7 atoms of vanadium undergo a change of 

1 (vanadium(V) to vanadium(iv)), and that the iron undergoes no 

change. This value for the equivalent weight departs from the 

value for pure potassium dichromate, 49.0^20,by 1.2 parts in 

100,000, less than the standard deviation of 2 parts in 

100,000 for the analyses being reported, and also less than 

the uncertainty resulting from the uncertainties in the atomic 

weights. Thus, the impurities found do not account for the 

240 p.p.m. deficiency in the value obtained by coulometric 

assay. 

The remaining impurity must most certainly be water. A 

determination of the water in NBS IJiSfj,, potassium dichromate, 

was made by Schwab and Wichers (21) who found 0.027 and 0.021 

per cent water by a vacuum fusion-manometrie method. Under the 

microscope Schwab and Wichers actually observed bubbles in 

the crystals of NBS 156. Further, Svec and Conzemius (27) 

found hydride clustering in the pre-spark mass spectrum of NBS 

156b indicative of water. We have confirmed by examination 

with the microscope that bubbles, presumably of mother liquor, 

are also present in the crystals of NBS 156b. Although the 

bubbles are not uniformly distributed, presumably the 1-g. 

samples used were large enough to cancel out the inhomogeneity. 

It can hardly be an accident, however, that the water in NBS 

156 (0.024, the Schwab and Wichers average) and the coulo­

metric assay of NBS 126b, a different lot, (99.976, the 
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average of Marinenko and Taylor and this work) add up to 

100,000. The determination of water in NBS 156b was, there­

fore, undertaken. 

A change in the crystalline structure of potassium di-

chromate from triclinic to monoclinic has been reported (8, 

22); the transition temperature being about 240°C. Examina­

tion of crystals of potassium dichromate under a polarizing 

microscope show that the phase change is accompanied by a 

shattering of the crystal. Furthermore, the crystals appeared 

to be shattered in a way that' indicated the bubbles to be 

bursting. 

A twenty gram sample of potassium dichromate was dried 

for 24 hours at 100°C to remove surface water. After weigh­

ing, the sample was placed in a muffle furnace at 26o*C for 

48 hours. The weight loss amounted to 0.018 per cent. After 

an additional 48 hours the weight loss had increased slightly 

to 0.019 per cent. No additional weight loss was found over 

the next several days. The weight loss when added to 99.977 

per cent, the average of the value of Marinenko and Taylor 

and the two independent values obtained in this work, totals 

99.996 per cent. The remaining 0.004 per cent may be accounted 

for by the impurities or experimental error. 

In order to establish that the weight loss at 260°C was 

due to the loss of water and not the decomposition of potassium 

dichromate, the dried sample was assayed by coulometric titra­

tion with electrogenerated iron(II) as described. The results. 
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given in Table averaged 100.00^ per cent, slightly greater 

than expected. Although it is fruitless to try to explain the 

slightly high results, the possibility of decomposition of the 

potassium dichromate during the extended high temperature 

drying is not ruled out. 

Table 3. Coulometric assay of NBS 136b potassium dichromate 
by titration with electrogenerated iron(Il), sample 
dried 96 hours at 260°C 

Pound per cent 

99.998 100.004 
100.001 100.006 

Average 100.003 

Titrations of Ammonium Hexanitratocerate 

Results of titrations of seven specimens of ammonium 

hexanitratocerate are given in Table 4, together with the 

thorium content as obtained by emission spectroscopy and re­

ported as ammonium hexanitratothorate. 

The uncertainties in the atomic weights of nitrogen, • 

+ 0.00005, hydrogen, + 0.00001, and oxygen, + 0.0001, are 

overshadowed by the uncertainty in the atomic weight of 

cerium, + 0.01; thus, for ammonium hexanitratocerate, 

CeNsHsOie# molecular weight 548.23, the total uncertainty in 

the NaHsOis portion is + 0.0023 and that in the cerium +0.01 

or about two parts in 100,000. 
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Table 4. Coulometric assay and thorium content of various 
preparations of ammonium hexanitratocerate 

Specimen 
and 

source 

Pound 
per cent 

Thorium content 
as p.p.m. 

(NH4%Th(N03)6 

Found in 
other work 
per cent 

A 
Certified 
standard of 
reference 
grade®" 

Average 

Standard 
deviation 

B 
Certified 
standard of 
reference 
grade®" 

Average 

Prepared 
from 
basnaesite 

Average 

grade 

Average 

99.965 
99.969 
99.969 
99.972 
99.976 
99.978 

99.972 

0.005 

99.992 
99.990 

99.992 

99.980 
99.982 
99.987 
99.988 

99.984 

99.959 
99.962 
99.966 

99.962 

540 

160 

<40( 

540 

99.97 
Certified 
value of 
G. Frederick 
Smith Chemi­
cal Company° 

100.00 
Certified 
value of 
G. Frederick 
Smith Chemi­
cal Company" 

^G. Frederick Smith Chemical Company, Columbus, Ohio. 

^As determined by weight buret titration of NBS sodium 
oxalate. 

^Thorium content less than the detection limit, 40 p.p.m. 
ammonium hexanitratothorate. 
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Table (continued) 

Specimen 
and 
source 

Found 
per cent 

Thorium content Found in 
as p.p.m. other work 

(NtUj2Th(N03)3 per cent 

S 
Reagent 
grade®-

100.022 
100.026 
100.030 

140 

Average . 100.026 • 

F 
Reagent 
grades-

99.433 
99.430 

2,190 

Average 99.433 

G 
Reagent 
grades-

98.705% 
98.6684 

7,900 

Average 98.686 

^1-g. Samples only because of limited amount of material. 



www.manaraa.com

51 

The precision of the analyses of ammonium hexanitrato-

cerate was somewhat poorer than that of the analysis of the 

dichromate, the standard deviation being O.OO5 (per cent 

purity). This lower precision undoubtedly resulted from the 

difficulty in determining the end-point with high precision as 

discussed above. 

The specimens of ammonium hexanitratocerate designated A 

and B were obtained from the G. Frederick Smith Chemical 

Company in I966 and 19^7 as "Certified Standard of Reference" 

materials. The coulometric assays reported check the values 

of the Smith Company (Table 4)^ the latter having been obtained 

(25) by weight buret titrations of NBS arsenic trioxide and 

reliable probably to two parts in 10,000. The thorium in these 

samples expressed as ammonium hexanitratothorate added to the 

coulometric assay values give 100.006 and 100.008, respectively. 

Examination under the microscope revealed that the crystals of 

Specimens A and B were small and poorly formed; occasional in­

clusions, presumably of mother liquor, were observed but they 

were far less frequent than in NBS 156b potassium dichromate. 

As described above under Experimental Work, the prepara­

tion of ammonium hexanitratocerate from the rare earth oxide 

concentrate from basnaesite was straight forward and easy. 

The results of analyses of the materials obtained from the 

fourth and fifth recrystallizations were identical. Although 

the thorium in Specimen C was below the detection limit of the 



www.manaraa.com

52 

emission spectrographic method, the assay, average 99.984, 

indicated some I56 p.p.m. of impurity present. Even so, this 

simple preparation is equal in purity to NBS potassium 

dichromate and equally acceptable as a primary standard. 

Specimens D, E, F and G were "Reagent Grade" materials, 

no claim having been made by the manufacturer that they could 

be used as primary standard materials. Specimens D and E are 

sufficiently pure to serve well as primary standard material 

but the lack of information as to the extent of the purifica­

tion steps used makes it idle to speculate about them, although 

such speculation about E is especially inviting because of the 

high assay value together with appreciable thorium. Specimens 

F and G contain relatively large amounts of thorium and it is 

apparent that the oxidizing capacity falls off with increasing 

content of thorium as expected. 

Because of recent advances in the technology of the rare 

earths, starting materials essentially free of thorium are now 

available commercially and future commercial preparations of 

ammonium hexanitratocerate should be essentially thorium-free 

even without the numerous recrystallizations now known to be 

necessary for the elimination of thorium (25). The present 

work leaves no doubt that ammonium hexanitratocerate is an 

excellent primary standard. 
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SUMMARY 

A high precision assay of the primary standards potassium 

dichromate and ammonium hexanitratocerate has been carried out 

by the coulometric method. 

High precision coulometric titration apparatus was 

assembled largely from commercial sources : constant current 

source, standard resistance, and standard voltage, Leeds and 

Northrup Company, standard frequency oscillator, American Time 

Products, Inc., weights, ¥m. Ainsworth and Sons, Inc., cali­

brated at the National Bureau of Standards. Apparatus was 

housed in a constant temperature room and frequent checks were 

made that all calibrations remained constant. 

Two coulometric cells have been designed, one for the in­

ternal generation of iron(ll), used to titrate the oxidizing 

agents potassium dichromate and ammonium hexanitratocerate, 

and a second for the external generation of sodium hydroxide, 

used for the titration of potassium dichromate as an acid and 

potassium acid phthalate. 

The anode and cathode compartments of both cells are 

separated by two ultrafine glass frits and an intermediate 

electrolyte compartment to insure separation of anode and 

cathode electrolysis products. 

The external generation cell, designed for the analysis of 

materials which undergo undesirable electrode reactions, con­

sists of two chambers. The bulk of the titrant is generated 
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in one chamber, the titrant is brought in contact with the 

sample in the second chamber, and the titration completed by-

generating the final small amount of titrant at a second ex­

ternal electrode. 

Considerable attention was devoted to proving that these 

cells operate with one hundred per cent efficiency. 

Particular attention has been paid to the problem of end-

point detection. End-points in titrations of potassium dichro-

mate with electrogenerated iron(Il) were detected amperometri-

cally with one polarized platinum electrode. End-points in the 

ammonium hexanitratocerate titrations were detected ampero-

metrically using two polarized platinum electrodes. The problem 

of formation of platinum oxide on the indicating electrodes in 

the titration of cerium(lV) has been investigated in some de­

tail. 

Titrations of six samples of NBS 156b potassium dichromate 

with electrogenerated iron(Il) has given for the purity of this 

material 99.975 per cent with a standard deviation of 0.002 

per cent. 

Titration of six samples of NBS 156b potassium dichromate 

with electrogenerated hydroxide ion has given for the purity 

of this compound 99.978 per cent with a standard deviation of 

0.005 per cent. 

It has been shown that NBS 156b potassium dichromate, 

when heated at 240°C for one week, loses 0.019 per cent in 

weight with the shattering of the crystals and the loss of 



www.manaraa.com

55 

occluded water. Assay by titration with electrogenerated 

iron(II) of the material so dried has given for the purity 

100.005 with a standard deviation of 0.002 per cent. 

Titrations of several preparations of ammonium hexanitra-

tocerate with electrogenerated iron(Il) has shown that the 

oxidizing capacity of this compound falls off with increasing 

thorium content. However, the analysis of three preparations, 

low in thorium, averaged 99.978, 99.984, and 99.992 per cent 

respectively with standard deviations of O.OO5 per cent. Low 

thorium preparations of ammonium hexanitratocerate are, there­

fore, the equal of potassium dichromate for use as a primary 

standard. 
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